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Abstract

This paper considers a multi-unit ascending auction with two play-

ers and common values. A large set of equilibria in this model is not

robust to a small reputational perturbation. In particular, if there is

a positive probability that there is a type who always demands many

units, regardless of price, then the model has a unique equilibrium

payoff profile. If this uncertainty is only on one side, then the player

who is known to be normal lowers her demand in order to stop the auc-

tion immediately at the reserve price. Hence, her possibly committed

opponent buys all the units she demands at the lowest possible price.

If the reputation is on both sides, then a War of Attrition emerges.

Keywords: Multi-unit auction, uniform price, ascending auction, rep-

utation, aggressive bidding.
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1 Introduction

In the simultaneous ascending auction, the bidding continues until the total

demand decreases so that it matches the supply. Despite great progress in

understanding various incentives faced by players in this auction, the simplest

theoretical model of such an auction with many units for sale and common

values suffers from a serious deficiency: there is a multiplicity of equilibria,

and consequently the model has virtually no predictive power.

This paper shows that this multiplicity of equilibria is not robust. In-

troduce a positive probability that players may be of a behavioral type that

demands large quantities, even if prices are high. This perturbation creates

incentives for normal players to mimic those who are programmed to demand

large quantities. Then there is a unique equilibrium payoff profile and that

fact does not depend on the size of the perturbation. This result is obtained

in a model of ascending auction with two players and multiple units of a

homogeneous good for sale, in which the value of a unit is the same for both

players regardless of quantities acquired, but it is not necessarily common

knowledge.

If the reputation is one-sided (only one player may be behavioral, but the

other one is certain to be normal), then in any equilibrium the auction stops

immediately. The player who has no reputation decreases his demand to the

level that clears the market, in order to prevent the price from rising. If the

reputation is two-sided, then there is delay.

Riedel and Wolfstetter (2006) show that if the marginal values are known,

decreasing in quantity and not equal across agents, then there is a unique

equilibrium through iterated elimination of dominated strategies, in which

the division of objects is effi cient and the price is equal to the reserve price

and therefore the minimal revenue. Their case does not cover common values

and thus the analysis below can be viewed as a complement of their work.

The central parameter for an assessment of the equilibrium of an ascend-

ing auction with common values is not what is known about the values of

the object for sale, but how symmetric/asymmetric the reputational profile

is. When reputation across players is asymmetric —then the seller will not
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get any revenue beyond the reserve price, even if the normal players have

private information about the value of the object. On the other hand, when

reputation is symmetric, then the revenue should be higher than the reserve

price, even if the normal players do not have private information about the

value of the object. The detailed discussion of these results is presented after

the model.

2 Literature

It is known that there is a great multiplicity of equilibria in a standard

ascending or uniform price multi-unit auction, particularly if the values are

common. Very low prices, even equal to an exogenous reserve price, may

be supported by an equilibrium. For instance, assume that the equilibrium

implicitly splits the total number of units among players who keep demanding

their designated shares for any price. No player has any incentive to deviate

from this strategy profile. Any deviation to a lower demand does not affect

the price, but assigns fewer units to the player and hence results in lower

payoff. Any deviation to a higher demand rises the price but ultimately

does not affect the assignment, again resulting in lower payoff. Equilibrium

strategy profile results in obtaining the agreed share at the lowest possible

price. Other allocations and prices can be supported as equilibrium outcomes

too.

Obviously, this collusive-seeming equilibrium is not revenue-maximizing.

A possibility of low revenues was first noticed byWilson (1979), in the context

of a divisible-object and sealed-bid version of the model, see also Back and

Zender (1993). Riedel and Wolfstetter (2006) has already been mentioned.

Some recommendations were given to the seller who, for some reasons,

must use uniform price mechanism. Back and Zender (1999) and McAdams

(2007) give the seller an opportunity to adjust the supply strategically af-

ter players announced their demands. Since players’ collusive behavior is

sensitive to this quantity, they are not able to coordinate so well.

Another approach assumes that there are some noisy players who pur-

chase some part of the total supply, leaving an uncertain residual for the
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strategic players. The probability of such a supply variation can be arbi-

trarily small, and still a unique equilibrium is selected as long as this noise

has a full support. This method of equilibrium selection was introduced by

Klemperer and Meyer (1989); Rostek et al. (2009) is a recent application.

The model in this paper introduces a perturbation too, but in a different

context and with different implications.

All of the above papers consider multi-unit auctions in a sealed-bid con-

text. In contrast to that, this project focuses on ascending version of the

model, similar to Milgrom (2000) or Cramton (2006). This rises a possi-

bility of interesting dynamics, such as collusion (for instance, Cramton and

Schwartz (2002)). This paper studies dynamic reputational effects. There

is a small literature on auctions and reputations in the repeated auction

framework (Bikhchandani (1988), Kwiek (2011)).

From the point of view of the reputation literature the model of this paper

is closely related to Myerson’s (1991, section 8.8) model of bargaining with

reputation. A multi-unit ascending auction can be seen as a mechanism in

which players negotiate/bargain how to split the objects among themselves.

One difference is how the cost of bargaining is specified — in the classical

bargaining model this is discounting, in the multi-unit ascending auction

this is through increasing price. The connection between bargaining and

ascending multi-unit auctions was made by Ausubel and Schwartz (1999)

The most important contribution of this study is an extension of Myer-

son’s (1991) result to the case in which common values are not commonly

known, in the context of an auction. In particular, reputational effects com-

pletely dominate what players may know about the value of the objects. For

instance, suppose that player one knows the value and player two does not;

standard logic of the winner’s curse suggests that player two should yield

early. However, if player two has a reputation as defined below (no mat-

ter how small) and player one does not, it is player one who would yield

immediately.

Myatt (2005) studies a War of Attrition with ex ante asymmetry in val-

ues rather than with common values; his result is that the player with lower

private value exits almost immediately if the two-sided reputational pertur-
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bation is small enough. To complement this result, this paper provides an

example with one-sided reputation, like Myerson (1991), and demonstrates

that there may be multiplicity of equilibria if values are ex ante asymmetric,

as in Myatt (2005).

3 Model

Players, types and payoffs. There are L ≥ 3 units of a good for sale. Let

r ≥ 0 be an exogenous reserve price. There are 2 players, who can buy at

most L− 1 units.1

The information is asymmetric in two ways. At the beginning of the

auction, nature chooses for each player i = 1, 2 (i) a type ti ∈ {0, xi}, where
ti = 0 denotes a "normal" type and ti = xi denotes a "behavioral" type; and

(ii) a signal θi ∈ Θi about the value of the good. For simplicity assume that

the set of signal profiles Θ = Θ1×Θ2 is finite; let θ = (θ1, θ2) . Bidder i learns

his type and his signal, (ti, θi). Assume that θ, t1 and t2 are independent,

but θ comes from an unrestricted joint probability distribution, where qθ is

the probability of θ.

With probability 1 − µi player i is a normal type, ti = 0. The gross

value of one unit when θ is realized is vθ > 0. This formulation makes sure

that the value of the unit is constant across agents and does not depend on

the quantity acquired by the player. This value however does depend on the

profile of signals, and therefore is only partially known to player i, who knows

the realization of signal θi but not of θj. A normal type of player i has the

realized net payoff equal to (vθ − p) zi, where p is the final price of each unit
and zi is the final allocation of units to player i.

With probability µi ≥ 0 player i is a behavioral type, ti = xi. The

behavioral type always demands xi units for any price, a quantity that is

treated as exogenous in this paper. To assure that seller’s revenue is bounded,

assume that the behavioral type reduces his demand from xi to zero at price

maxθ vθ.

1Assuming that bidders may demand all L units introduces more cases to consider
without adding any insights.
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Assumptions about the dynamic structure. The format of an auc-
tion is ascending. The extensive game form will clarify what is meant by this

statement, but will reflect the following assumptions. The price is continu-

ously rising and each player publicly announces how many units he wants to

buy at a current price. Bidders announce their individual demands by means

of a dial that can be rotated only towards lower values. They can decrease

their demand only by one unit at a time, but they can react instantaneously

to such demand reductions. If two players decide to decrease demand at

the same price, nature uses a fair coin to determine whose reduction is an-

nounced. The auction stops at the market clearing price, the first price where

the excess demand is zero.

The extensive game form. After the players learn their types and
signals, their first move is to announce simultaneously their starting demands

at the initial reserve price. If the initial excess demand, denoted n̄, is non-

positive then the auction stops and the normal types receive payoffs implied

by these demands and the reserve price. Otherwise, if the initial excess

demand is n̄ > 0, the game enters the ascending price phase. This multi-unit

ascending auction will be regarded as a series of simple timing games.

Formally, define n ∈ {n̄, n̄− 1, ..., 1} to be a stage of the game in which
the excess demand is n. In other words, stages of the ascending auction are

counted backwards, with stage 1 being the last one. If one lets zni to be the

demand of player i in stage n, then obviously L+ n = zn1 + zn2 .

In each stage n, player i = 1, 2 chooses a price, bi, at which she intends

to reduce her demand by one unit. This price will also be referred to as her

"bid". This bid cannot be lower than a reserve price in this stage, denoted

pn; the initial reserve price is exogenously given, pn̄ = r. If player 1 chooses

a bid lower than player 2, then her bid defines a new reserve price for the

next stage, pn−1 = b1. The new demand of player 1 is zn−1
1 = zn1 − 1, and the

demand of player 2 remains unchanged at zn−1
2 = zn2 . If there is a tie, then

the player whose demand is to be reduced is determined randomly. The other

player, who also intended to reduce her demand at this price, may reduce

her demand at the same price but at the next stage.

The public history at the beginning of stage n consists of prices at which
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previous reductions of demand occurred and the resulting demands. Thus,

the history at the beginning of stage n is

hn =
{

(pn̄, zn̄1 , z
n̄
2 ) ,
(
pn̄−1, zn̄−1

1 , zn̄−1
2

)
, ..., (pn, zn1 , z

n
2 )
}

Elements of hn are related in the obvious way,2 following from the auction

procedure described above. The final element of this list must have n > 0 for

the auction to still continue after price pn. The new history in the next stage

is hn−1 =
{
hn,
(
pn−1, zn−1

1 , zn−1
2

)}
. Let the probability of a normal type of

player i at the beginning of stage n be µni , where the initial probability is an

exogenous parameter of the game, µn̄i = µi.

Strategy. Let Fi (bi|θi) be a probability that a normal player i who
observed θi decreases her demand at or before price bi ≥ pn, where the

dependence on the history hn is implicit. This can also be expressed as

Πi (bi|θi), the probability that (unconditional) player i decreases her demand
at or before bi. A strategy for the entire game is a collection of these functions,

one for each history, and a probability distribution over {0, 1, ..., L− 1} which
picks the initial demand.

4 Behavioral type on one side

This section assumes that player i is known to be normal, µi = 0, but the

probability that player j is of behavioral type is µj > 0. Consider strategies

in which normal player j starts demanding xj at the reserve price and suppose

that at the beginning of this ascending auction there is some excess demand,

n̄ ≥ 1.

The following is the main result. The proof is in the Appendix.

2In particular, pn̄ = r is the initial price; zn̄i ≤ L− 1 is the initial demand of bidder i.
The price at which one of the players reduced her demand is pη, and the demand of player
i is zηi , where η = n̄ − 1, ..., n is the excess demand resulting from this reduction. The
price at which demand was reduced becomes the new "reserve" price for the next stage,
pη ≥ pη+1. If pη = pη+1, then after one of the bidders decreased her demand at price pη+1,
one of the bidders decreased the demand again at the same price. Demand reductions

occur only by one unit, zηi ∈
{
zη+1
i − 1, zη+1

i

}
for both i = 1, 2 and zηi = zη+1

i − 1 for
some i.
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Proposition 1 Consider any stage n ≥ 1 with initial price pn, in which

µnj > 0, µni = 0. If player j has a signal such that her conditional expected

value exceeds this initial price, then the only equilibrium market clearing price

is pn and the allocation to player j is xj units.

This is closely related to the result developed by Myerson (1991, section

8.8) in the context of bargaining. The proof measures two forces that would

have to occur in any equilibrium in which both players do not reduce their

demands immediately. The first force is that after player j reduces his de-

mand (thus revealing his normality) player i must obtain a particularly high

payoff, call it wi. This is because if j does not reduce his demand (which

happens with positive probability), then player i obtains a low payoff from

insisting on her high initial demand for some time and yielding at a higher

price. Since the expected payoff of player i over these two events has to be

at least as good as the available option of reducing the demand immediately,

the promise of wi must be attractive. The second force is that when player

j reduces her demand, she must obtain a high payoff, call it wj, at least as

high as the available option of waiting until player i ultimately reduces her

demand. The proof shows that these requirements for high payoffs wi and

wj are not simultaneously feasible.

Proposition 1 makes sure that the construction of Myerson (1991) works

in the current auction context and even if common values are not commonly

known. Some remarks about common values should be made.

The first interesting observation is that Proposition 1 does not depend on

set Θ or the distribution of the signals. This may strike as surprising. For

example, suppose that player i knows the true value of a unit, while player

j does not. One may argue that this additional knowledge gives player i an

advantage: it makes bidding less attractive to player j, due to winner’s curse.

This may force player j to yield before player i. This argument was formal-

ized by Milgrom and Weber (1982, Theorem 7) in the context of common-

value single-unit auctions.3 Yet, Proposition 1 states that this consideration

3They showed that if the signal of one of the players is a garbling of the other signal,
then one of the players wins immediately with probability one, although it does not have
to be the player with the superior information.
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is completely dominated by reputation. The literature on single-unit auc-

tions with almost common values (Bikhchandani (1988), Klemperer (1998))

observes that a slight perturbation of the common-value model leads to a

result that is apparently very similar to Proposition 1: a small ex ante asym-

metry between players leaves only one equilibrium, which is very asymmetric.

However, in a certain sense this similarity is deceiving, for winner’s curse does

not play any role in Proposition 1. For example, if one assumes that common

value is commonly known, thus eliminating winner’s curse, then Milgrom and

Weber (1982), Bikhchandani (1988) and Klemperer (1998) all cease to ex-

hibit strong asymmetries. In contrast to this, Proposition 1 is valid even if Θ

is a singleton. It really is the force identified by Myerson (1991) that drives

Proposition 1.

This rises a question: if winner’s curse is not the driving force behind

Proposition 1, can the assumption about common values be relaxed? It turns

out that the answer is no. The following example considers players whose

values are asymmetric ex ante, a case studied by Myatt (2005), but focuses

on one-sided reputation, like in Myerson (1991). In contrast to Proposition

1, there may be a multiplicity of equilibria. More importantly, if reputation

was two-sided, then the outcome would be determined completely by the

asymmetry of values, and completely independent on the asymmetry of rep-

utations, in the limit. In other words there is no counterpart of Proposition

1, and the relevant environment is Riedel and Wolfstetter (2006).

Example 1 Suppose that r = 0, xi = xj = 2, and L = 3. Values are

commonly known but they are not common. In particular, assume that i

is value-strong, but reputation-weak. That is, let vj < vi and assume that

player i is known to be normal, µi = 0 and player j is possibly committed

0 < µj ≤ 1 − vj/vi. For any number ai such that 0 ≤ ai ≤ 1/vj, a pair of

functions

Πi (b) = aib+ (1− aivj)
Πj (b) = b/vi

for 0 ≤ b ≤ vj is an equilibrium. Similarly, for any number aj ≥ µj/ (vi − vj) ,
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a pair of functions

Πi (b) = b/vj

Πj (b) = ajb+ (1− ajvi)

for 0 ≤ b ≤ vj is an equilibrium.

If aj = µj/ (vi − vj), then the equilibrium is the limit point of the sequence
of unique equilibria in the two-sided reputation model, when one considers a

sequence of models with µi → 0. Notice that if we further assume that µj → 0,

we have that Πj (b)→ 1 for all b and hence the value-strong player wins the

auction at the lowest price with probability one, regardless of what the relative

reputational profile is.

5 Some implications

What if reputation is on both sides, µj > 0 and µi > 0? The equilibrium

would resemble a War of Attrition, in which normal types of both players

mimic their behavioral types for a certain period of time, until one of the

players reduces her demand, revealing that she is normal. This action induces

a one-sided reputational phase, as described above. In other words, as soon as

one of the players reduces her demand at a certain price, she keeps reducing

it at this price until total quantity demanded reaches quantity supplied.

The probability is strictly less than one that market clearing occurs at

the reserve price and, consequently, the seller’s expected revenue is higher

than the reserve price. To see this, suppose that this is not true and in

fact there is an equilibrium in which the normal type of a player, say i,

reduces her demand at the reserve price with probability one. Her opponent,

player j, who observes that i does not reduce demand must infer that she

faces a behavioral type and hence must respond by reducing her demand

immediately. But then, normal type of player i could mimic her behavioral

type and receive a payoff arbitrarily close to her maximum, proving that this

is not an equilibrium.4

4If values are common and commonly known (Θ is a singleton), then the equilibrium
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As far as the revenue is concerned, the results for the common value

case studied above are different than for the private value context studied

in the literature. Riedel and Wolfstetter (2006) work with the assumption

that commonly known valuation functions of two players cross once, and thus

values are not common. Their game is dominance solvable and the effi cient

division of units across players occurs at the reserve price. If one considers

a situation in which players’valuation is their private information, then one

can conjecture that the expected price in equilibrium would be necessarily

higher than the reserve price.

The situation is somewhat different in the case of the common-value auc-

tions studied in this paper. Predictions depend on how symmetric the rep-

utation profile is, and not on the quality of signals that players may have

about the objects’value. If the reputation profile is two-sided, and in par-

ticular if it is symmetric, then the seller will obtain a revenue beyond the

reserve price even if players do not have any private information about the

objects’value (as in footnote 4). On the other hand, if reputations are very

asymmetric, then the revenue of the seller will be close to the reserve price,

even if players do have private information about the value of the objects

for sale (as in Proposition 1).

The interpretation of the analysis presented in this paper depends cru-

cially on whether the existence of behavioral types is understood to be signif-

icant (either µi or µj are far from zero), or whether it is a near impossibility

(both µi and µj are close to zero).

One can encounter situations in which the first of these cases occurs. One

possible justification of behavioral types is worth mentioning here. Imagine

a type of a player for whom various objects are complements. For instance,

telecommunication firms may face very strong geographical complementari-

can be derived explicitly along the lines of Abreu and Gul (2000). The unique perfect
Bayesian equilibrium payoff profile is generated by a strategy profile that involves Πj (b) = 1−

(
v−b
v−r

)ωi
Πi (b) = 1− µi

(
µj
)(ωj/ωi) ( v−b

v−r

)ωj
for b ∈

[
r, v − (v − r)

(
µj
)(1/ωi)], where ωi = yi/ (xi − yi) and 0 < (µi)

ωi ≤
(
µj
)ωj

.
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ties, whereby a license in one area is worth a lot only if a license in a neigh-

boring area is acquired too. In the context of the above model, assume that

a bundle of x units is worth vx to this type, if all x units are acquired, and

zero otherwise. Such a type has a weakly dominant strategy to stay in the

auction until the price reaches v, thus behaving exactly like a behavioral type

assumed in this paper. If indeed behavioral types are justified, this paper

provides a useful model to judge equilibrium behavior. The equilibrium is

robust, in the sense that a small change of the parameters of the model leads

to a small change of the equilibrium.

If behavioral types are unrealistic ex ante, then the interpretation of the

analysis presented in this paper leads to rather ambiguous conclusions for an

external observer (such as an econometrician or the seller). It is diffi cult to

observe if and in which way the reputational profile is asymmetric. In this

case, one should not have much confidence in the outcome of the auction.

In other words, all equilibria of the unperturbed model should be treated

seriously, because any of them can be approximated by a unique equilibrium

of the perturbed model.

It is worth mentioning that there are cases that are inherently symmetric,

such as when players meet for the first time, or if they are anonymous.

The model presented above is simple, so it is natural to ask how robust

it is to different assumptions. One possible objection is to the assumption

of rigidity of the behavior of the behavioral type: it always demands an

exogenous number xi. This assumption is made for convenience and can be

relaxed. For instance, one could consider more complicated behavioral types

who reduce demand with some density as the price goes up. However, as long

as the probability is nonzero that they fail to reduce demand, Proposition 1

applies.

One can also consider a more complicated game, in which at the begin-

ning of the auction there is private information about the size of xi. When

choosing their initial demand, normal types choose which behavioral type

they want to mimic. After this initial demand is announced, normal players

believe that they may face either a normal type or one particular behavioral

type who sticks to the observed level of demand. From now on the game path
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follows a two-sidedWar of Attrition. Obviously, the equilibrium behavior and

seller’s revenue depend on the ex ante distribution of behavioral types, but

the complication of having more behavioral types does not contribute to our

understanding of the observations made above.

6 Appendix. Proof of Proposition 1

The following lemma provides an inductive step (where Eθi|θj ,hnvθ is the

expected value conditional on θj and history hn).

Lemma 1 Fix n = 0, 1, ..., 2 (L− 1) − 1. Suppose that in any stage n in

which the reputational profile is µnj > 0, µni = 0 and the signal θj is such that

pn < Eθi|θj ,hnvθ, it is true that the only equilibrium market clearing price is

pn and the equilibrium allocation to player j is xj units.

Then in any stage n + 1 in which the reputational profile is µn+1
j > 0,

µn+1
i = 0 and the signal θj is such that pn+1 < Eθi|θj ,hn+1vθ, it is true that the

only equilibrium market clearing price is pn+1 and the equilibrium allocation

to player j is xj units.

Before the proof of this lemma is provided, a simpler version of this result

is presented. In particular, assume that Θ is a singleton, so that the value of

the object is commonly known. Assume also that the excess demand is one

unit, so that n = 0 and the inductive hypothesis is satisfied by construction.

Ignore subscript in xj and let y = L− x be a residual quantity for player
i, once the behavioral demand of player j is fully satisfied. Let Πj (b) be the

probability that player j decreases his demand for the first time before or at

b. Obviously, Πj (b) ≤ 1− µ1
j < 1 for all b. Define Rj to be the greatest price

at which player j reduces his demand. Notice that Ri ≤ Rj and Πi (Ri) = 1.

This is because at any price higher than Rj player i believes with probability

one that j is not going to reduce his demand.

Write R for Ri and contrary to the claim of the Lemma, suppose that R

is strictly greater than the reserve price, p1 < R.

For any b ∈ (p1, R) , player j could reduce demand either at prices in the

interval [b, R] or at prices higher than R (including never reducing demand).
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Let ζb be the probability that player j reduces his demand at prices higher

than R, conditional on reaching price b. That is

ζb =
1− Πj (R)

1− Πj (b)

Let
(
wbi , w

b
j

)
be the expected payoff profile at b conditional on player j

reducing his demand at prices less than R. Beyond its feasibility, one does

not know anything specific about this payoff profile, because if j reduces

her demand prior to R, she reveals her normality and the game may realize

multiple equilibrium payoff profiles. The core of the proof lies in points 3, 4

and 5 below. Point 3 states the feasibility constraint on wbi+w
b
j . Point 4 states

that the promise wbi has to be high enough for i to follow this equilibrium.

Point 5 states that the promise wbj has to be high enough for j to follow the

equilibrium. The rest of the proof demonstrates the contradiction between

these feasibility and incentive requirements.

1. It must be that R < v. Contrary to the statement, assume R = v.

Player i compares the payoff from reducing demand at price b and at a

later price b# ∈ (b, R) . The minimal payoff that this player gets from

reducing at b is (v − b) y. The maximal payoff if i reduces at b# is no

higher than

(v − b)x
(
Πj

(
b#
)
− Πj (b)

)
+
(
1− Πj

(
b#
)) (

v − b#
)
y

which assumes that if j reduces at a price in the interval
[
b, b#

)
, then

the quantity x demanded by player i is fully satisfied at the lowest

possible price b. The former cannot exceed the latter, which leads to

an inequality

(
1− Πj

(
b#
)) (

v − b#
)
y ≥ (v − b)

(
y − x

(
Πj

(
b#
)
− Πj (b)

))
Consider the limit of this inequality as b# → R. The left-hand side

converges to zero, since R = v. If b is close enough to R we obtain a

contradiction in the form of limb#→R Πj

(
b#
)
− Πj (b) ≥ y/x.
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2. Probability ζb converges to one as b→ R. Contrary to this statement,

assume that there is a positive probability mass that player j reduces

her demand at priceR. Then player i who is supposed to reduce demand

at a price close to R, would benefit from delaying this reduction to a

price just after R. The cost of this delay can be made arbitrarily small,

but the benefit is bounded away from zero by point 1.

3. Total payoff at price b, conditional on player j reducing his demand at

some price higher than b, cannot exceed the total surplus available at

price b. Namely,

wbi + wbj ≤ (v − b) (x+ y)

4. The expected payoff of i from his high demand has to be at least as

high as the expected payoff from reducing the demand immediately to

y at a current price b:

ζb (v −R) y +
(
1− ζb

)
wbi ≥ (v − b) y

Replace wbi by its upper bound implied by step 3,

−ζb (R− b) y +
(
1− ζb

)
(v − b)x−

(
1− ζb

)
wbj ≥ 0 (1)

5. With positive probability player j reduces his demand at prices below

R. The payoff from this cannot be lower than the lowest payoff from

maintaining the demand for x units. Namely,

wbj ≥ (v −R)x (2)

6. Replace wbj in inequality (1) with its lower bound in inequality (2) to

conclude that ζb is bounded away from 1 by a term involving only x

and y

ζb ≤ x

x+ y
< 1

This contradicts step 2. Thus R = p1.
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The main difference between this simplified version and the real proof of

the lemma is that the latter has to take into account the fact that there are

privately known payoff-relevant signals. The diffi culty comes from the fact

that some inequalities are valid signal-by-signal, while some are valid only as

conditional expectations for different conditions.

Proof. Consider excess demand of n + 1 units at the starting price pn+1.

Fix an equilibrium.

Let Fj (b|θj) be the probability that normal player j decreases his de-
mand for the first time before or at b, conditional on observing signal θj;

let Πj (b|θj) =
(
1− µn+1

j

)
Fj (b|θj) . Define R̃j (θj) to be the greatest price at

which player j of signal θj reduces his demand

R̃j (θj) = min
{
b : Πj (b|θj) = lim

b′→∞
Πj (b′|θj)

}
Let Rj = maxθj R̃j (θj) . Similarly define Πi (b|θi), R̃i (θi) and Ri. Obviously,

Πj (b|θj) ≤ 1− µn+1
j < 1 for all b and θj.

Notice that Ri ≤ Rj and Πi (Ri|θi) = 1 for all θi. This is because at any

price higher than Rj player i believes with probability one that j is not going

to reduce his demand.

Write R for Ri and contrary to the claim of the Lemma, suppose that

pn+1 < R.5

For any b ∈ (pn+1, R) , player j could reduce demand either at prices in the

interval [b, R] or at prices higher than R (including never reducing demand).

Let ζbθ be the probability that player j reduces his demand at prices higher

than R, conditional on price b and player j observing θj. That is

ζbθ =
1− Πj (R|θj)
1− Πj (b|θj)

5Assume that R̃j (θj) ≥ R and R̃i (θi) = R for all θ ∈ Θ. This is without loss of
generality. If there is θ′i such that say R̃i

(
θ′i
)
< R, then only consider prices greater than

R̃i
(
θ′i
)
in the proof below and only these signals lead player i to reduce her demand after

R̃i
(
θ′i
)
. Similarly for signal of player j.
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Let ζb = minθ ζ
b
θ and let

(
wbiθ, w

b
jθ

)
be the expected payoff profile at b condi-

tional on player j reducing his demand at prices less than R and conditional

on signal profile being θ. Let qbi (θj|θi) to be the posterior probability of θj
conditional on b and θi.

1. It must be that for all θi

R < lim
b→R

∑
θj

qbi (θj|θi) vθ (3)

Clearly, the expected value of the unit at price R cannot be strictly

lower than R, because otherwise normal type of both players would

have reduced her demand strictly before R, contradicting its definition.

Thus, contrary to the statement, assume that there is θi such that

R = lim
b→R

∑
θj

qbi (θj|θi) vθ (4)

Player i of signal θi compares the payoff from exiting at at price b and

at a later price b# ∈ (b, R) . The minimal payoff that this player gets

from exiting at b is ∑
θj

qbi (θj|θi) (vθ − b) y

The maximal payoff if this player reduces her demand at b# is no higher

than∑
θj

qbi (θj|θi)
[
(vθ − b)x

(
Πj

(
b#|θj

)
− Πj (b|θj)

)
+
(
1− Πj

(
b#|θj

)) (
vθ − b#

)
y
]

which assumes that if j exits at a price in the interval
[
b, b#

)
, then the

quantity x demanded by player i is fully satisfied at the lowest possible

price b. The former cannot exceed the latter, because then player i of
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signal θi would reduce her demand before price reaches R. Hence

∑
θj

qbi (θj|θi)
[
(vθ − b)x

(
Πj

(
b#|θj

)
− Πj (b|θj)

)
+
(
1− Πj

(
b#|θj

)) (
vθ − b#

)
y
]

≥
∑
θj

qbi (θj|θi) (vθ − b) y

or

∑
θ′j

qbi
(
θ′j|θi

) (
1− Πj

(
b#|θ′j

))∑
θj

qb
#

i (θj|θi)
(
vθ − b#

)
y

≥
∑
θj

qbi (θj|θi) (vθ − b)
[
y − x

(
Πj

(
b#|θj

)
− Πj (b|θj)

)]
Now consider this inequality in the limit as b# goes to R first and then

b goes to R. Let b# → R. The left-hand side converges to zero, by (4).

Hence

0 ≥
∑
θj

qbi (θj|θi) (vθ − b)
[
y − x

(
lim
b#→R

Πj

(
b#|θj

)
− Πj (b|θj)

)]

Consider the square bracket. Note that for every ε > 0, there is a price

b∗ strictly less than R such that for all b > b∗ and for all θj we have

ε > limb#→R Πj

(
b#|θj

)
− Πj (b|θj). Replace the square bracket with

the term y − xε, which is strictly lower. Choose ε < y
x
, so that y − xε

is strictly positive. Then we have that for every b ∈ (b∗, R)

0 >
∑
θj

qbi (θj|θi) (vθ − b)

This is a contradiction.

2. The bound ζb converges to one: limb→R ζ
b = 1.

Note that since Πj (b|θj) is non-decreasing, ζbθ is non-decreasing and
bounded above, so it is converging. Suppose that there exists θ such

that limb→R ζ
b
θ < 1; that is, player i of signal θi thinks that there is
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a mass point of players j who reduce demand at R. Then there is an

ε > 0 such that this θi reduces his demand at prices less than R − ε.
(Otherwise player i of signal θi, who is supposed to reduce demand at a

price arbitrarily close to R, would benefit from delaying this reduction

to a price just after R; the gain is bounded away from zero by (3),

but the cost of delay is arbitrarily close to zero). This contradicts the

definition of R.

3. Total payoff conditional on player j reducing his demand at some price

higher than b cannot exceed the total surplus available at price b.

Namely, for all θ

wbiθ + wbjθ ≤ (vθ − b) (x+ y) (5)

4. With positive probability player i maintains his high demand for all

prices less than R; this expected payoff has to be at least as high as

the expected payoff from reducing the demand immediately to y at a

current price b. Namely, for all θi∑
θj

qbi (θj|θi)
(
ζbθ (vθ −R) y +

(
1− ζbθ

)
wbiθ
)
≥
∑
θj

qbi (θj|θi) (vθ − b) y

Replace wbiθ by its upper bound implied by inequality (5). Multiply by

the denominator of qθi (θj|θi) and sum over all θi, to obtain one equation
(where qbθ is the probability of θ, given b)∑
θ

qbθ
(
ζbθ (vθ −R) y +

(
1− ζbθ

) (
(vθ − b) (x+ y)− wbjθ

))
≥
∑
θ

qbθ (vθ − b) y

(6)

Define Θb
L to be the set of θ for which

(vθ −R) y ≤ (vθ − b) (x+ y)− wbjθ

and let Θb
U be its complement. Let λ

b =
∑

Θb
U
qbθ.

Write the sums in (6) separately for Θb
L and Θb

U . Note that for all

θ ∈ Θb
L, one can replace ζ

b
θ with its lower bound ζ

b and the inequality
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will hold. Likewise, for all θ ∈ Θb
U , one can replace ζ

b
θ with its upper

bound 1.

∑
Θb
L

qbθ
(
ζb (vθ −R) y +

(
1− ζb

) (
(vθ − b) (x+ y)− wbjθ

))
+
∑
Θb
U

qbθ (vθ −R) y

≥
∑
Θb
L

qbθ (vθ − b) y +
∑
Θb
U

qbθ (vθ − b) y

which can be written as

∑
Θb
L

qbθ
(
−ζb (R− b) y +

(
1− ζb

)
(vθ − b)x

)
−
(
1− ζb

)∑
Θb
L

qbθw
b
jθ

≥ (R− b) y
(
1− λb

)
(7)

Notice that for any b, it must be that λb > 0, or in other words ζb

occurs with positive probability. If not, then inequality (6) would be

violated.

5. With positive probability player j reduces his demand at prices below

R. The payoff from this cannot be lower than the payoff from main-

taining the demand for x units. Namely, for all θj∑
θi

qbj (θi|θj)wbjθ ≥
∑
θi

qbj (θi|θj) (vθ −R)x

Multiply this inequality by the denominator of qbj (θi|θj) and sum over

all θj. Then write the sums separately for Θb
L and Θb

U . Note that w
b
jθ ≤

(vθ − b)x; use this observation to replace wbjθ with its upper bound in

the summation over Θb
U to obtain∑

Θb
L

qbθw
b
jθ ≥

∑
Θb
L

qbθ (vθ −R)x− (R− b)x
(
1− λb

)
(8)
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6. Replace
∑

Θb
L
qbθw

b
jθ in inequality (7) with its lower bound in inequality

(8)

∑
Θb
L

qbθ
(
−ζb (R− b) y +

(
1− ζb

)
(vθ − b)x

)

−
(
1− ζb

)∑
Θb
L

qbθ (vθ −R)x− (R− b)x
(
1− λb

)
≥ (R− b) y

(
1− λb

)
Group all terms involving summation over Θb

L, divide by R−b > 0 and

conclude that ζb is bounded away from 1 by a term involving only x

and y

ζb ≤ x+ yλb − y
x+ yλb

≤ x

x+ y
< 1

The implication of part 6 contradicts point 2. Thus R = pn+1. Since

pn+1 < Eθi|θj ,hn+1vθ, it is impossible that player j reduces his demand at

pn+1, so it must be player i.

The hypothesis of this inductive step is trivially true for excess demand

n = 0. The result follows.
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